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Abstract 
 
This paper presents a reliability-based sensitivity method for mechanical components with arbitrary distribution parameters. Tech-

niques from the perturbation method, the Edgeworth series, the reliability-based design theory, and the sensitivity analysis approach were 
employed directly to calculate the reliability-based sensitivity of mechanical components on the condition that the first four moments of 
the original random variables are known. The reliability-based sensitivity information of the mechanical components can be accurately 
and quickly obtained using a practical computer program. The effects of the design parameters on the reliability of mechanical compo-
nents were studied. The method presented in this paper provides the theoretic basis for the reliability-based design of mechanical compo-
nents.  
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1. Introduction 

In recent years, efforts have been made to develop a means 
of quantifying uncertainties, and their combined effect on 
reliability, in engineering systems. Theoretically, these uncer-
tainties are modeled as random variables governed by joint 
probability density or distribution functions. In actual engi-
neering design, the exact joint probability density functions 
are often unavailable or difficult to obtain owing to insuffi-
cient data. Not infrequently, the available data is sufficient 
only to evaluate the first few moments, including the mean, 
variance and correlations. 

Traditionally, engineering system reliability is achieved 
through the use of coefficients of safety and the adoption of 
conservative assumptions in the design process. The tradi-
tional approach, as it lacks the logical basis for addressing 
uncertainties, cannot quantitatively assess the level of safety or 
reliability. Assuring the performance of new systems for 
which there is no established basis of calibration, obviously 
would be problematic. Over the last three decades, diverse 
design methods have been developed in engineering design to 

ensure the reliability of product systems [1−6]. 
A great number of reliability-based design approaches have 

been formulated on the assumption that original random vari-
ables are normal distributions. When non-normal original 
random variables are involved, Rosenblatt transformation [7] 
and the Hasofer Lind-Rackwitz Fiessler method [8] are often 
used. However, as already noted, the exact joint probability 
density function is often unavailable or difficult to obtain ow-
ing to insufficient data, which might be sufficient only to 
evaluate the first few moments. In this situation of incomplete 
information, it is difficult to employ the Rosenblatt transfor-
mation or the Hasofer Lind-Rackwitz Fiessler method and to 
obtain the reliability-sensitivity design parameters. Thus, an 
alternative computational method of reliability-sensitivity 
design with arbitrary distribution parameters is required. 

Reliability-based sensitivity analysis has been widely ap-
plied in reliability engineering design to estimate the effect of 
a change in a random variable on the probability of structural 
failure, to obtain valuable information on model behavior, to 
evaluate the accuracy of a model, and other purposes. Struc-
tural reliability sensitivity calculation methods have been suc-
cessfully developed, for both efficiency and accuracy [9−10]. 
These include, among others, an efficient adaptive importance 
sampling (AIS) method for component and system reliability-
based sensitivities [11], an approximate solution technique for 
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reliability-based sensitivity of non-linear random vibration 
rotor-stator systems with rubbing [12], and a reliability-based 
sensitivity analysis protocol based on an efficient simulation 
approach [13].  

The present study focused on an extension of reliability-
based sensitivity analysis of mechanical components with 
arbitrary distribution parameters. This paper proposes a nu-
merical approach to calculation of the reliability-based sensi-
tivity of mechanical components, incorporating the perturba-
tion method, the reliability theory and sensitivity analysis. 
This method can be used to obtain the reliability-based sensi-
tivity information of mechanical components accurately and 
quickly. The results of numerical computation demonstrate 
that the method presented is a convenient and practical reli-
ability-based sensitivity design approach. 

 
2. Perturbation method of reliability design 

A fundamental problem in reliability analysis is computa-
tion of the multi-fold integral of the reliability R 
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( ) 0
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X
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in which fX(X) denotes the probability density function of a 
random parameter vector X=(X1 X2 ··· Xn)T, and g(X) defines 
the state function representing the safe state or failure state 
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where g(X)=0 is the limit-state equation representing an n-
dimensional surface that may be called the “limit-state sur-
face” or “failure surface”. 

The vector of random parameters X and the state function 
g(X) are expanded as 

 
d pε= +X X X                                     (3) 

( ) ( ) ( )d pg g gε= +X X X                             (4) 

 
where ε is a small parameter. Subscript d in Eqs. (3) and (4) 
represents the certainty aspect of the random parameters, and 
subscript p, the random aspect, having a zero mean value in 
the random parameters. Obviously, it is necessary for the 
value of the random aspect to be smaller than the value of the 
certain aspect. Both sides of Eqs. (3) and (4) are evaluated for 
the mean value of random variables as follows: 
 

( ) ( ) ( )d p dE E Eε= + = =X X X X X                    (5) 

( ) ( ) ( ) ( ) ( )g d p dE E Eg g g g gµ ε ⎡ ⎤⎡ ⎤ ⎡ ⎤= = + = ≈⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦X X X X X   
     (6) 
 

Similarly, according to Kronecker algebra [14], both sides of 

Eqs. (3) and (4) are evaluated for the variance, the third mo-
ment and the fourth moment of the random variables and the 
state function as follows: 
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( ) ( ) [ ]{ } [ ]4 44
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where the Kronecker power is P[k]=P⊗P[k-1]=P⊗P⊗···⊗P, and 
the symbol ⊗ represents the Kronecker product defined as 
(A)p×q⊗(B)s×t=[aijB]ps×qt. 

By expanding the state function gp(X) to a first-order ap-
proximation in a Taylor series of vector-valued functions and 
matrix-valued functions at a point E(X)=Xd on the failure sur-
face gp(Xd)=0, the expression of gp(X) is given as 
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Substituting Eq. (9) into Eqs. (8), we obtain 
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where Var(X) is the variance matrix that includes all of the 
variance and covariance of the random parameters, C3(X) and 
C4(X) are the third and the fourth central moments matrices 
that include both of the third and the fourth central moments 
of the random parameters respectively. 2

gσ , gθ  and gη  are 
the variance and the third and fourth central moments of the 
state function g(X) respectively. 

The reliability index [15] is defined as 
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It should be emphasized that the first-order approximations of 
µg and σg derived above must be evaluated at the mean values 
(

1Xµ ,
2Xµ ,···,

nXµ ). In some approximate sense, the reliability 
index may be directly used as a measure of reliability. If the 
distributions of the original random variables are normal, the 
distance from the “minimum” tangent plane to the failure 
surface may be used to approximate the actual failure surface, 
and the corresponding reliability, namely reliability, may be 
represented as  
 

( )R β=Φ                                        (12) 

 
where Φ( ) is the standard normal distribution function. 

Because the state function g(X) has non-normal distribu-
tions, Eq. (12) is not valid. In actual design, due to the lack of 
statistical dates, the probability density function or cumulative 
distribution function of some original random variables are 
often unknown, and the probabilistic characteristic of these 
variables is often expressed using only the first fourth mo-
ments. On the condition of known first four moments of origi-
nal random variables, the probability distribution function of 
the standardized variable is approximately expressed by the 
first four moments of the original random variables, using the 
Edgeworth series. 

 
3. Edgeworth series 

For a state function g(X), the standard forms can be ex-
pressed as 

 
g

g

( )g
y

µ
σ
−

=
X

                                   (13) 

 
The arbitrary distribution function of the standard random 

variable y that is approximately expressed by the standard 
normal distribution function using the Edgeworth series is 
addressed in [16]: 
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where the first four terms are available, and 1β , 2β  are the 
coefficient of skewness and the coefficient of kurtosis, respec-
tively. Φ(i)( ) denotes the ith differentiation of Φ( ): 
 

( ) 1
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−Φ = −                        (15) 

 
where ϕ( ) is the standard normal probability density function 
and Hj-1( ) is the Hermite polynomial 
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Thus, the reliability R is represented as 
 

( ) ( ( ) 0) 1 ( )R P g Fβ β= ≥ = − −X                    (17) 
 
When only the first four terms of the Edgeworth series are 

used, sometimes the reliability R>1 can occur when Eq. (17) is 
used to determine R. In the present study, if R>1 appeared, the 
amendatory expression from [4] was employed:  
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          (18) 

 
According to reliability theory, the reliability R is between 0 

and 1, namely, 0 1R≤ ≤ . The amendatory expression (18) 
can ensure the reliability R to satisfy 0 1R≤ ≤  gradually and 
accurately. 

 
4. Reliability sensitivity 

The reliability index β is a function of the mean and stan-
dard deviation of g(X) and also of X. the reliability sensitivity 
with respect to the mean value of the system parameters is 
approximately derived as follows: 
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Based on Eq. (6) and Eq. (10a), 
 

( ) [ ]

( ) ( ) ( ) ( )
2

2
g T T TVar Var

g g g
σ

⎛ ⎞ ⎡ ⎤∂ ∂ ∂⎟⎜ ⎢ ⎥⎟⎜= ⎟ = ⊗ =⎜ ⎢ ⎥⎟⎜ ⎟∂ ∂ ∂⎟⎜ ⎢ ⎥⎝ ⎠ ⎣ ⎦

X X X
X X AB

X X X
  

  (20) 

( ) ( )g
T T T T

g g

1 1
2 2 n

σ
σ σ

∂ ⎛ ⎞∂ ∂ ∂ ⎟⎜= ⋅ = ⋅ ⊗ + ⊗ ⎟⎜ ⎟⎟⎜⎝ ⎠∂ ∂ ∂ ∂
AB A BI B I A

X X X X
  

 (21) 
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where nI is a unit matrix of dimensions n×n and n n×U is a 
transformation matrix of dimensions n2×n2. 

So, 
 

( ) ( ) ( )( )
2 2

g
1 1T 2 T T 2 T T

g

1 Var
2 n n n n

g g g gU U
σ

σ × ×

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ⎟⎜ ⎟⎜ ⎟⎟= ⋅ ⊗ + ⊗ ⊗ ⊗ ⊗⎜ ⎜ ⎟⎟⎜ ⎜ ⎟⎟⎜ ⎟⎜∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
I I I X

X X X X X
  

    (24) 



1190 Y. Zhang et al. / Journal of Mechanical Science and Technology 24 (6) (2010) 1187~1193 
 

 

In general, 
2

2 T

g∂
∂ X

 and ( )Var X  are very small, so g
T

σ∂
∂X

, 

also, is still very small. In (19), the second parameter of the 
reliability sensitivity with respect to the mean value is less 
than the first one, so the second parameter of the reliability 
sensitivity with respect to the mean value can be approxima-
tively expressed as (25): 
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The reliability sensitivity with respect to the standard variance 
of the system parameters is approximately derived as follows: 
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Substituting the known conditions and the results derived 
earlier into Eqs. (25) and (29), the reliability sensitivity 

TD DR X  and ( )D DVarR X  are obtained.  
If the reliability computed by the Edgeworth series is R>1, 

the results computed by the amendatory expression (18) are 

closer to that by Monte Carlo simulation than that by the 
Edgeworth series in interval [0.99, 1] that is usually used for 
reliability analysis in engineering computation practice. The 
distribution function curves derived from the amendatory 
expression (18) are monotonic in interval [0, 1]. Therefore, if 
the reliability computed by the Edgeworth series is R>1, the 
reliability sensitivity computed by the differentiation of the 
amendatory expression is more accurate than that computed 
by Eqs. (25) and (29). (Sometimes the results computed by 
Eqs. (25) and (29) are erroneous). If the results computed by 
the Edgeworth series are R>1, the reliability sensitivity with 
respect to the reliability index is derived as follows: 
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Substituting Eq. (34) into ( )R β β∂ ∂ of Eqs. (25) and (29), 

the reliability sensitivity TD DR X  and ( )D DVarR X  are 
obtained. 

 
5. Numerical example 

5.1 Reliability sensitivity of banjo flange 

According to the Bach method [17], the bending stress on 
the banjo flange (in Fig. 1) risk section, namely at the D1 di-
ameter, using the structural model of an analogous beam is 
expressed as 

 
0 1

2
1

3 ( )
π

P D D
D h

σ −=                                  (35) 

 
where P is total load effect on the flange, D0 is the diameter of 
the bolt distributing circularity, D1 is the diameter of the risk 
section, and h is the thickness of the flange. 

On the basis of stress-strength interference theory, the state 
equation of the banjo flange is defined as 

 
( )g r σ= −X                                     (36) 

 
where r is the material strength of the Banjo flange. The origi-

 

 
 
Fig. 1. Banjo flange. 
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nal random variable vector X is given by X=(r D0 D1 h P)T, 
where the mean matrix E(X), the variance matrix Var(X), the 
third central moment matrix C3(X) and the fourth central mo-
ment matrix C4(X) are known. 

Generally speaking, geometric parameters and material 
properties are thought to usually have normal distributions. 
The mean value and standard deviation of the geometric sizes 
of a Banjo flange are (D0)=(1200.0, 6.0) mm, (D1)=(1000.0, 
5.0) mm, (h)=(50.0, 0.25) mm. The total load P effecting the 
flange is an arbitrarily distributed random variable with the 
first four moments (P)=(1.3025×106 N, 1.2021×105 N, 
1.9872×1015 N3, 1.1347×1021 N4). The mean value and stan-
dard deviation of the material yield strength of the Banjo 
flange is (r)=(135.0, 5.265) MPa. If there are fatigue problems, 
the strength value might be a fatigue-limit value according to 
the demand of life. 

The reliability index β, reliability R and reliability sensitivi-
ties TD DR X , ( )D DVarR X , therefore, becomes 

 
β=3.100955, RE=0.9990356, RMCS=0.99349,  
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New insight into parametric sensitivity in reliability theory is 
given. The derivatives of the reliability with respect to the 
vector of random parameters X were established. As expected 
from this example, the reliability of the system increases as the 
material strength r, the diameter of risk section D1 and the 
thickness h of the banjo flange increase, but the reliability 
descends as the total load P effect on the flange and the di-
ameter of the bolt distributing circularity D0 of the banjo 
flange rises. In other words, the results established that the 
reliability is very sensitive to the geometrical sizes, moder-
ately sensitive to the material strength, and somewhat sensi-
tive to the load of observation. The results of the reliability 
sensitivities largely accord with the practical operational con-
ditions.  
 
5.2 Reliability sensitivity of coil- tube spring 

The most stress that the coil tube-spring [18] imparts to the 
walls of the vessel (in Fig. 2) is 
 

max nomS KS=                                   (37) 
 
where K is the shear stress factor and Snom is the nominal shear 
stress of the coil tube-spring. 
 

2

2

5 7 3
4 8

BK
C C

+= +                                 (38) 

DC
d

= , 1dB
d

=                                  (39) 

 
where C is the index of the spring, B is the ratio of the outside 
diameter to the inside diameter, D is the pitch diameter of the 
spring, d is the outside diameter of the tube section and d1 is 
the inside diameter of the tube section. 
 

( )nom 3 4

8
1
PDS

d B
=

−π
                               (40) 

 
where P is the axial load. 

As the strain factor equals 1, the stiffness of the coil tube-
spring is expressed as 
 

( )4 4

3

1
8

Gd BP
D nδ
−

=                                  (41) 

 

  
 
Fig. 2. Coil tube-spring. 
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where δ is the axial strain of the coil tube-spring, G is the 
shear modulus, and n is the number of working coils of the 
coil tube-spring. 

The most shear stress is represented by substituting Eq. (38) 
and Eq. (41) into Eq. (37), as given by 
 

2 2
1

max 2 2

5 7 3
4 8

d d d GdS
D D D n

δ
⎛ ⎞+ ⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜⎝ ⎠π

                  (42) 

 
The influence of the load eccentricity and pitch effect is ig-
nored in Eq. (42). 

On the basis of the stress-strength interference theory, the 
state equation of the coil tube-spring is  

 
max( )g r S= −X                                   (43) 

 
where r is the material strength of the coil tube-spring. The 
original random variable vector X is given by X=(r d1 d D G n 
δ)T, where the mean matrix E(X), the variance matrix Var(X), 
the third central moment matrix C3(X) and the fourth central 
moment matrix C4(X) are known. 

The first two moments of the section sizes and material 
characteristics of a coil tube-spring are (d1)=(9.4, 0.047) mm, 
(d)=(10.00076, 0.0500038) mm, (D)=(82.11195, 0.41055975) 
mm, (G)=(79380, 3969) MPa, (n)=(10, 0.0833), ρ=0.7. The 
material strength of the coil tube-spring r is determined by the 
fatigue limit. It is an arbitrarily distributed random variable 
with the first four moments (524.1855 MPa, 72.8453 MPa, 
−2.1176×105 (MPa)3, 9.4475×107 (MPa)4). The deformation 
quantity δ of the coil tube-spring is an arbitrary distributed 
random variable with the first four moments (δ)=(180.4157 
mm, 3.5926 mm, 52.1762 (mm)3, 888.3206 (mm)4). 

The reliability index β, reliability R and reliability sensitivi-
ties TD DR X , ( )D DVarR X can be obtained as 
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The derivatives of the reliability with respect to the vector of 
random parameters X are established. As expected from this 
example, the reliability of the system increases as the material 
strength r, the pitch diameter D and the number of working 
coils n increases, but the reliability diminishes as the outside 
diameter d, the inside diameter d1, the shear modulus G and 
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the axial strain δ of the coil tube-spring rise. In other words, 
the results indicated that the reliability is very sensitive to the 
geometrical sizes, moderately sensitive to the material strength 
and the axial strain, and somewhat sensitive to the shear 
modulus of observation. 

 
6. Conclusions 

This paper investigates a computational method of calculat-
ing the reliability sensitivity of mechanical components with 
arbitrary distribution parameters. Using the approach, the reli-
ability-based sensitivity of mechanical components was de-
termined quantitatively. Based on the reliability theory and a 
sensitivity analysis, the reliability-based sensitivity of me-
chanical components could be successfully derived, which is 
an important contribution to the field of mechanical compo-
nents reliability research. The numerical computational results 
in this paper largely accord with the practical operational con-
ditions. This method is effective, reliable and represents a 
potential theoretic basis for reliability-based design of me-
chanical components. Similarly, if case studies are prohibi-
tively complicated, the implicit limit-state functions, such as 
those defined by the large-scale finite element models or the 
response surface method models, should be used to demon-
strate the general applicability of the proposed method. 
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